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MODULE-I 

NUMBER SYSTEMS 

 
Many number systems are in use in digital technology. The most common are the 

decimal,binary, octal, and hexadecimal systems. The decimal system is clearly the most 

familiar to usbecause it is a tool that we use every day. Examining some of its 

characteristics will help us tobetter understand the other systems. In the next few pages we 

shall introduce four numericalrepresentation systems that are used in the digital system. 

There are other systems, which we 

will look at briefly. 

 Decimal 

 Binary 

 Octal 

 Hexadecimal 

 

 
Decimal System 

The decimal system is composed of 10 numerals or symbols. These 10 symbols are 0, 1, 2, 3, 

4, 5, 6, 7, 8, 9. Using these symbols as digits of a number, we can express any quantity. The 

decimal system is also called the base-10 system because it has 10 digits. 

Decimal Examples 
 

3.1410 

5210 

102410 

6400010 



 

 

 

 

 

 
 

Binary System 

In the binary system, there are only two symbols or possible digit values, 0 and 1. This 

base-2 system canbe used to represent any quantity that can be represented in decimal or 

other base system.In digital systems the information that is being processed is usually 

presented in binary form. Binaryquantities can be represented by any device that has only 

two operating states or possible conditions. 

E.g..a switch is only open or closed. We arbitrarily (as we define them) let an open switch 

represent binary 0 and a closed switch represent binary 1. Thus we can represent any 

binary number by using series of switches. 

 

 
Octal System 

The octal number system has a base of eight, meaning that it has eight possible digits: 

0,1,2,3,4,5,6,7. 

octal to Decimal Conversion 
 

2378 = 2 x (82) + 3 x (81) + 7 x (80) = 15910 

24.68 = 2 x (81) + 4 x (80) + 6 x (8-1) = 20.7510 

11.18 = 1 x (81) + 1 x (80) + 1 x (8-1) = 9.12510 

12.38 = 1 x (81) + 2 x (80) + 3 x (8-1) = 10.37510 

 

 

Hexadecimal System 

The hexadecimal system uses base 16. Thus, it has 16 possible digit symbols. It uses the 

digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols. 

Hexadecimal to Decimal Conversion 
 

24.616 = 2 x (161) + 4 x (160) + 6 x (16-1) = 36.37510 

11.116 = 1 x (161) + 1 x (160) + 1 x (16-1) = 17.062510 

12.316 = 1 x (161) + 2 x (160) + 3 x (16-1) = 18.187510 



 

 

 

Code Conversion 

 
 

Converting from one code form to another code form is called code conversion, like 

converting from binary to decimal or converting from hexadecimal to decimal. 

Binary-To-Decimal Conversion 

Any binary number can be converted to its decimal equivalent simply by summing together 

the weights of the various positions in the binary number which contain a 1.e.g. 

110112=24+23+01+21+20=16+8+0+2+1=2710 

 

Octal-To-Binary Conversion 

 
 

Each Octal digit is represented by three binary digits. 
 

Example: 

4 7 28= (100) (111) (010)2 = 100 111 0102 

 

 

Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion 

 
 Convert Octal (Hexadecimal) to Binary first. 

 Regroup the binary number by three bits per group starting from LSB if Octal is 

required. 

 Regroup the binary number by four bits per group starting from LSB if 

Hexadecimal is required. 



 

 

 

 

Binary Codes 

Binary codes are codes which are represented in binary system with modification from the 

original ones. Below we will be seeingthe following: 

 Weighted Binary Systems 

 Non Weighted Codes 
 

Weighted Binary Systems 

Weighted binary codes are those which obey the positional weighting principles, each 

position of the number represents a specific weight. The binary counting sequence is an 

example. 

8421 Code/BCD Code 

The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is 

possible to assign weights to the binary bits according to their positions. The weights in the 

BCD code are 8,4,2,1. 

Example: The bit assignment 1001, can be seen by its weights to represent the decimal 9 

because: 

1x8+0x4+0x2+1x1 = 9 
 

2421 Code 

This is a weighted code, its weights are 2, 4, 2 and 1. A decimal number is represented in 4- 

bit form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the 2421 code represents 

the decimal numbers from 0 to 9. 

5211 Code 

This is a weighted code, its weights are 5, 2, 1 and 1. A decimal number is represented in 4- 

bit form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the 5211 code represents 

the decimal numbers from 0 to 9. 

 

 

 

 
Reflective Code 



 

 

A code is said to be reflective when code for 9 is complement for the code for 0, and so is for 

8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are reflective, 

whereas the 8421 code is not. 

 

 

Excess-3 Code 

Excess-3 is a non weighted code used to express decimal numbers. The code derives its 

name from the fact that each binary code is the corresponding 8421 code plus 0011(3). 

Gray Code 

The gray code belongs to a class of codes called minimum change codes, in which only one 

bit in the code changes when moving from one code to the next. The Gray code is non 

weighted code, as the position of bit does not contain any weight. The gray code is are 

reflective digital code which has the special property that any two subsequent numbers 

codes differ by only one bit. This is also called a unit-distance code. In digital Graycode has 

got a special place. 

Error Detecting and Correction Codes 

For reliable transmission and storage of digital data, error detection and correction is 

required. Below are a few examples of codes which permit error detection and error 

correction after detection. 

 

 
Error Detecting Codes 

When data is transmitted from one point to another, like in wireless transmission, or it is 

just stored, like in hard disks and memories, there are chances that data may get 

corrupted. To detect these data errors, we use special codes, which are error detection 

codes. 

 

 
Parity 

In parity codes, every data byte, or nibble (according to how user wants to use it) is 

checked if they have even number of ones or even number of zeros. Based on this 

information an additional bit is appended to the original data. Thus if we consider 8-bit 

data, adding the parity bit will make it 9 bit long. 



 

 

At the receiver side, once again parity is calculated and matched with the received 

parity(bit 9), and if they match, data is ok, otherwise data is corrupt. 

 

 

 

 

 

 

 

There are two types of parity: 
 

 Even parity: Checks if there is an even number of ones; if so, parity bit is zero. 

When the number of ones is odd then parity bit is set to 1. 

 Odd Parity: Checks if there is an odd number of ones; if so, parity bit is zero. When 

number of ones is even then parity bit is set to 1. 

 

Error-Correcting Codes 

Error correcting codes not only detect errors, but also correct them. This is used normally 

in Satellite communication, where turn-around delay is very high as is the probability of 

data getting corrupt. 

ECC (Error correcting codes) are used also in memories, networking, Hard disk, CDROM, 

DVD etc. Normally in networking chips (ASIC), we have 2 Error detection bits and 1 Error 

correction bit. 

Hamming Code 

Hamming code adds a minimum number of bits to the data transmitted in a noisy channel, 

to be able to correct every possible one-bit error. It can detect (not correct) two bits errors 

and cannot distinguish between 1-bit and 2-bits inconsistencies. It can't – in general – 

detect 3(or more)-bits errors The idea is that the failed bit position in an n-bit string (which 

we'll call X) can be represented in binary with log2(n) bits, hence we'll try to get it adding 

just log2(n) bits. 



 

 

 

 

ASCII Code 

ASCII stands for American Standard Code for Information Interchange. It has become a 

world standard alphanumeric code for microcomputers and computers. It is a 7-bit code 

representing 27 = 128 different characters. These characters represent 26 upper case letters 

(A to Z), 26 lowercase letters (a to z), 10 numbers (0 to 9), 33 special characters and 

symbols and 33 control characters. 

 

 
BOOLEAN ALGEBRA AND LOGIC GATES 

The English mathematician George Boole (1815-1864) sought to give symbolic formto 

Aristotle‘s system of logic. Boole wrote a treatise on the subject in 1854, titled 

AnInvestigation of the Laws of Thought, on Which Are Founded the Mathematical 

Theories ofLogic and Probabilities, which codified several rules of relationship between 

mathematicalquantities limited to one of two possible values: true or false, 1 or 0. His 

mathematicalsystembecame known as Boolean algebra. All arithmetic operations 

performed with Booleanquantities have but one of two possibleOutcomes: either 1 or 0. 

There is no such thing as ‖2‖ or ‖-1‖ or ‖1/2‖ in the Boolean world. 

It is a world in which all other possibilities are invalid by fiat. As one might guess, this is 

notthe kind of math you want to use when balancing a check book or calculating current 

througha resistor. 

However, Claude Shannon of MIT fame recognized how Boolean algebra could be applied 

toon-and-off  circuits,  where  all  signals  are  characterized  as  either  ‖high‖  (1)  or  ‖low‖ 

(0).His1938 thesis, titled A Symbolic Analysis of Relay and Switching Circuits, put 

Boole‘stheoretical work to use in a way Boole never could have imagined, giving us a 

powerfulmathematical tool for designing and analyzing digital circuits. 

Like ‖normal‖ algebra, Boolean algebra uses alphabetical letters to denote variables.Unlike 

‖normal‖ algebra, though, Boolean variables are always CAPITAL letters, neverlowercase. 
 

Because they are allowed to possess only one of two possible values, either 1 or 0, each 

andevery variable has a complement: the opposite of its value. For example, if variable ‖A‖ 

has avalue of 0, then the complement of A has a value of 1. Boolean notation uses a bar 

above thevariable character to denote complementation, like this: 



 

 

 

 
 

 

 

 

In  written  form,  the  complement  of  ‖A‖  denoted  as  ‖A-not‖  or  ‖A-bar‖.  Sometimes  a 

‖prime‖symbol  is  used  to  represent  complementation.  For  example,  A‘  would  be  the 

complement ofA, much the same as using a prime symbol to denote differentiation in 

calculus  rather  thanthe  fractional  notation  dot.  Usually,  though,  the  ‖bar‖  symbol  finds 

more wide spread use thanthe ‖prime‖ symbol, for reasons that will become more apparent 

laterin this chapter. 

 

 
Boolean Arithmetic: 

Let us begin our exploration of Boolean algebra by adding numbers together: 

0 + 0 = 0 

0 + 1 = 1 
 

1 + 0 = 1 
 

1 + 1 = 1 
 

The first three sums make perfect sense to anyone familiar with elementary addition. 

TheLast sum, though, is quite possibly responsible for more confusion than any other 

singlestatement in digital electronics, because it seems to run contrary to the basic 

principles ofmathematics.Well, it does contradict principles of addition for real numbers, 

but not for Boolean numbers.Remember that in the world of Boolean algebra, there are 

only two possible values for anyquantity and for any arithmetic operation: 1 or 0. There is 

no such thing as ‖2‖ within thescope of Boolean values. Since the sum ‖1 + 1‖ certainly isn‘t 0, 

it must be 1 by process ofelimination. 

Principle of Duality: 



 

 

It states that every algebraic expression is deducible from the postulates of 

Booleanalgebra,and it remains valid if the operators & identity elements are interchanged. 

If theinputs of a NOR gate are inverted we get a AND equivalent circuit. Similarly when 

the inputsof a NAND gate are inverted, we get a OR equivalent circuit.This property is 

called duality. 

 

 

Theorems of Boolean algebra 

The theorems of Boolean algebra can be used to simplify many a complex 

Booleanexpression and also to transform the given expression into a more useful and 

meaningful 

equivalent expression. The theorems are presented as pairs, with the two theorems in a 

given pair being the dual of each other. These theorems can be very easily verified by the 

method of ‘perfect induction‘. According to this method, the validity of the expression is 

tested for all possible combinations of values of the variables involved. Also, since the 

validity of thetheorem is based on its being true for all possible combinations of values of 

variables, there is no reason why a variable cannot be replaced with its complement, or vice 

versa, without disturbing the validity. Another important point is that, if a given expression 

is valid, its dual will also be valid. 

Theorem 1 (Operations with ‘0‘ and ‘1‘) 

(a) 0.X = 0 and (b) 1+X= 1 

Where X is not necessarily a single variable – it could be a term or even a large expression. 
 

Theorem 1(a) can be proved by substituting all possible values of X, that is, 0 and 1, into 

the given expression and checking whether the LHS equals the RHS: 

• For X = 0, LHS = 0.X = 0.0 = 0 = RHS. 
 

• For X= 1, LHS = 0.1 = 0 = RHS. 
 

Thus, 0.X =0 irrespective of the value of X, and hence the proof. 
 

Theorem 1(b) can be proved in a similar manner. In general, according to theorem 1, 
 

0. (Boolean expression) = 0 and 1+ (Boolean expression) =1. 

1. For example: 0. (A.B+B.C +C.D) = 0 and 1+ (A.B+B.C +C.D) = 1, where A, B and C 

are 

Boolean variables. 



 

 

 

 

Theorem 2 (Operations with ‘0‘ and ‘1‘) 
 

(a) 1.X = X and (b) 0+X = X 
 

where X could be a variable, a term or even a large expression. According to this 

theorem,ANDing a Boolean expression to ‘1‘ orORing ‘0‘ to it makes no difference to the 

expression: 

• For X = 0, LHS = 1.0 = 0 = RHS. 
 

• For X = 1, LHS = 1.1 = 1 = RHS. 
 

Also, 

 

 

1. (Boolean expression) = Boolean expression and 0 + (Boolean expression) = Boolean 

expression. 

For example, 
 

1.(A+B.C +C.D) = 0+(A+B.C +C.D) = A+B.C +C.D 
 

Theorem 3 (Idempotent or Identity Laws) 
 

(a) X.X.X……X = X and (b) X+X+X +···+X = X 
 

Theorems 3(a) and (b) are known by the name of idempotent laws, also known as identity 

laws. 

Theorem 3(a) is a direct outcome of an AND gate operation, whereas theorem 3(b) 

representsan OR gate operation when all the inputs of the gate have been tied together. The 

scope ofidempotent laws can be expanded further by considering X to be a term or an 

expression. Forexample, let us apply idempotent laws to simplify the following Boolean 

expression: 



 

 

 

 
 

 

Theorem 4 (Complementation Law) 
 

(a) X_X = 0 and (b) X+X = 1 
 

According to this theorem, in general, any Boolean expression when ANDed to its 

complement yields a ‘0‘ and when ORed to its complement yields a ‘1‘, irrespective of the 

complexity of the expression: 

 
 

Hence, theorem 4(a) is proved. Since theorem 4(b) is the dual of theorem 4(a), its proof is 

implied. 

The example below further illustrates the application of complementation laws: 
 
 

 
Theorem 5 (Commutative property) 

 

Mathematical  identity,  called  a  ‖property‖  or  a  ‖law,‖  describes  how  differingvariables 

relate to each other in a system of numbers. One of these properties is known as the 

commutative property, and it applies equally to addition and multiplication. 

In essence,the commutative property tells us we can reverse the order of variables that are 

either addedtogether or multiplied together without changing the truth of the expression: 

Commutative property of addition 

A + B = B + A 

Commutative property of multiplication 

AB = BA 



 

 

 

 

Theorem 6 (Associative Property) 
 

The Associative Property,again applying equally well to addition and multiplication. 
 

This property tells us we can associate groups of added or multiplied variables together 

with 

parentheses without altering the truth of the equations. 

Associative property of addition 

A + (B + C) = (A + B) + C 
 

Associative property of multiplication 

A (BC) = (AB) C 

Theorem 7 (Distributive Property) 
 

The Distributive Property, illustrating how to expand a Boolean expression formed by 

the product of a sum, and in reverse shows us how terms may be factored out of Boolean 

sums-of-products: 

Distributive property 

A (B + C) = AB + AC 

Theorem 8 (Absorption Law or Redundancy Law) 
 

(a) X+X.Y = X and (b) X.(X+Y) = X 
 

The proof of absorption law is straightforward: 
 

X+X.Y = X. (1+Y) = X.1 = X 

 

 

Theorem 8(b) is the dual of theorem 8(a) and hence stands proved. 
 

The crux of this simplification theorem is that, if a smaller term appears in a larger term, 

then 

the larger term is redundant. The following examples further illustrate the underlying 

concept: 



 

 

 

 
 

 

 

De-Morgan‘s First Theorem 

It States that ―The complement of the sum of the variables is equal to the product of the 

complement of each variable . This theorem may be expressed by the following Boolean 

expression. 

 

 

 

 

 

 

 

 

 

 

 

De-Morgan‘s Second Theorem 

It states that the ―Complement of the product of variables is equal to the sum of 

complementsof each individual variables‖. Boolean expression for this theorem is 

 



 

 

 

 

 

 
 

Boolean Function 
 

 

 
 

 

 



 

 

 

 
 

 

 

 

 

 

 

 

Minterms and Maxterms 

A minterm is the product of N distinct literals where each literal occurs exactly Anyboolean 

expression may be expressed in terms of either minterms or maxterms. To do this we must 

first define the concept of a literal. A literal is a single variable within a term which may or 

may not be complemented. For an expression with N variables, minterms and maxterms 

are defined as follows : 

 once. 

 A maxterm is the sum of N distinct literals where each literal occurs exactly once. 



 

 

 

 

Product-of-Sums Expressions 

A product-of-sums expression contains the product of different terms, with each term 
 

being either a single literal or a sum of more than one literal. It can be obtained from the 

truthtable by considering those input combinations that produce a logic ‘0‘ at the output. 

Eachsuch input combination gives a term, and the product of all such terms gives the 

expression. 

Different terms are obtained by taking the sum of the corresponding literals. Here ‘0‘ 

and‘1‘respectively mean the uncomplemented and complemented variables, unlike sum-of 

products expressions where ‘0‘ and ‘1‘ respectively mean complemented and 

uncomplementedvariables. 

Since each term in the case of the product-of-sums expression is going to be the sum 

ofliterals, this implies that it is going to be implemented using an OR operation. Now, an 

ORgate produces a logic ‘0‘ only when all its inputs are in the logic ‘0‘ state, which means 

thatthe first term corresponding to the second row of the truth table will be A+B+C. The 

productof-sums Boolean expression for this truth table is given by Transforming the given 

productof-sums expression into an equivalent sum-of-products expression is a 

straightforwardprocess. Multiplying out the given expression and carrying out the obvious 

simplificationprovides the equivalent sum-of-products expression: 

A given sum-of-products expression can be transformed into an equivalent product-of 

sumsexpression by (a) taking the dual of the given expression, (b) multiplying out 

differenttermsto get the sum-of products form, (c) removing redundancy and (d) taking a 

dual to get the 

 

 

 

 

 
 

equivalent product-of-sums expression. As an illustration, let us find the equivalent 

productof sums expression of the sum-of products expression 



 

 

 

 



 

 

 

 

Digital Logic Gates 

The basic logic gates are AND, OR, NAND, NOR, XOR, INV, and BUF. The last two are 

notstandard terms; they stand for ‘inverter’ and ‘buffer’, respectively. The symbols for 

thesegates and their corresponding Boolean expressions are given in Fig. 2. 

 

 

 

 

 

 

 
Figure 2: 

 

All of the logical gate functions, as well as the Boolean relations discussed in the next 

section, follow from the truth tables for the AND and OR gates. We reproduce these below. 

We also show the XOR truth table, because it comes up quite often, although, as we shall 

see,it is not elemental. 



 

 

Construction of a Karnaugh Map 

An n-variable Karnaugh map has 2n squares, and each possible input is allotted asquare. 

In the case of a mintermKarnaugh map, ‘1‘ is placed in all those squares for which the 

output is ‘1‘, and ‘0‘ is placed in all those squares for which the output is ‘0‘. 0s are omitted 

for simplicity. An ‘X‘ is placed in squares corresponding to ‘don‘t care‘ conditions.In the 

case of a maxtermKarnaugh map, a ‘1‘ is placed in all those squares for which the output is 

‘0‘, and a ‘0‘ is placed for input entries corresponding to a ‘1‘ output. Again, 0s are omitted 

for simplicity, and an ‘X‘ is placed in squares corresponding to ‘don‘t care‘ 

conditions. The choice of terms identifying different rows and columns of a Karnaugh map 

isnot unique for a given number of variables. The only condition to be satisfied is that 

thedesignation of adjacent rows and adjacent columns should be the same except for one of 

theliterals beingcomplemented. Also, the extreme rows and extreme columns are 

consideredadjacent.Some of the possible designation styles for two-, three- and four- 

variable mintermKarnaughmaps are shown in the figure below. 

The style of row identification need not be the same as that of column identification as 

longas it meets the basic requirement with respect to adjacent terms. It is, however, 

acceptedpractice to adopt a uniform style of row and column identification. Also, the style 

shown inthe figure below is more commonly used. A similar discussion applies for 

maxtermKarnaughmaps. Having drawn the Karnaugh map, the next step is to form  

groups of 1s as per thefollowing guidelines: 

1. Each square containing a ‘1‘ must be considered at least once, although it can 

beconsidered as often as desired. 

2. The objective should be to account for all the marked squares in the minimum numberof 

groups. 

3. The number of squares in a group must always be a power of 2, i.e. groups can have 1,2, 

4,8, 16, squares. 

4. Each group should be as large as possible, which means that a square should not 

beaccounted for by itself if it can be accounted for by a group of two squares; a group 

oftwo squares should not be made if the involved squares can be included in a group offour 

squares and so on. 

5. ‘Don‘t care‘entries can be used in accounting for all of 1-squares to make optimum 

groups. They are marked ‘X‘ in the corresponding squares. It is, however, notnecessary to 



 

 

account for all ‘don‘t care‘ entries. Only such entries that can be used toadvantage should 

be used. 

TWO VARIABLE K-MAP 
 

 

 

 

 

 

THREE VARIABLE K-MAP 
 

 

 

 

 

 



 

 

 

 

 
 

 
 

 

 

 

 

 

 

Different Styles of row and column identification 

Having accounted for groups with all 1s, the minimum ‘sum-of-products‘ or ‘product- 

ofsums‘expressions can be written directly from the Karnaugh map. MintermKarnaugh 

mapand MaxtermKarnaugh map of the Boolean function of a two-input OR gate. The 

Mintermand Maxterm Boolean expressions for the two-input OR gate are as follows: 



 

 

 

 

 

 
 

 

 

MintermKarnaugh map and MaxtermKarnaugh map of the three variable Boolean 

function 
 

 
 

 

 

The truth table, MintermKarnaugh map and MaxtermKarnaugh map of the four variable 



 

 

 

Boolean function 
 

 
 

 
To illustrate the process of forming groups and then writing the corresponding minimized 

.Boolean expression, The below figures respectively show minterm and maxtermKarnaugh 

maps for the Boolean functions expressed by the below equations. The 

minimizedexpressions as deduced from Karnaugh maps in the two cases are given by 

Equation in thecase of the mintermKarnaugh map and Equation in the case of the 

maxtermKarnaugh map: 
 

 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 


	MODULE-I
	NUMBER SYSTEMS
	Decimal System
	Binary System
	Octal System
	Hexadecimal System
	Code Conversion
	Binary-To-Decimal Conversion
	Octal-To-Binary Conversion
	Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion
	Binary Codes
	Weighted Binary Systems
	8421 Code/BCD Code
	2421 Code
	5211 Code
	Reflective Code
	Excess-3 Code
	Gray Code
	Error Detecting and Correction Codes
	Error Detecting Codes
	Parity
	Error-Correcting Codes
	Hamming Code
	ASCII Code
	Boolean Arithmetic:
	Principle of Duality:
	Theorems of Boolean algebra
	De-Morgan‘s First Theorem
	De-Morgan‘s Second Theorem
	Boolean Function
	Product-of-Sums Expressions
	Digital Logic Gates
	Construction of a Karnaugh Map


