STATE BOARD OF TECHNICAL EDUCATION, BIHAR Scheme of Teaching and Examinations for VI SEMESTER DIPLOMA IN ELECTRONICS ENGINEERING

(Effective from Session 2016-17 Batch)

THEORY

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME		EXAMINATION – SCHEME						
			Periods per Week	Hours of Exam.	Teacher's Assessment (TA) Marks (A)	Class Test(CT) Marks (B)	End Semester Exam. (ESE) Marks (C)	Total Marks (A+B+C)	Pass Marks ESE	Pass Marks in the Subject	Credits
1.	Management (Common)	1600601	03	03	10	20	70	100	28	40	03
2.	Advance Communication System	1621602	04	03	10	20	70	100	28	40	03
3.	Digital Electronics-II	1621603	04	03	10	20	70	100	28	40	03
4.	Signal System	1621604	03	03	10	20	70	100	28	40	03
5.	Elective (Any One)	1621605	03	03	10	20	70	100	28	40	03
	Elective - (i) Adva Microprocessor (10		(ii) Advanced & Measureme			(iii) Minir Electronic (16216050	es	(iv) Med Electronic (1621605	ics	(v) Microv Engineerin (16216051	ng
		To	tal:- 17				350	500			

PRACTICAL

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME		EXAMINATION - SCHEME				
			Periods per	Hours	Practica	d (ESE)	Total	Pass Marks	Credits
			Week	of Exam.	Internal (A)	External (B)	Marks (A+B)	in the Subject	
6.	Advance Communication System Lab.	1621606	06	03	15	35	50	20	03
	Total:- 06 50								

TERM WORK

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME	EXAMINATION - SCHEME				
			Periods per week	Marks of Internal Examiner (X)	Marks of External Examiner (Y)	Total Marks (X+Y)	Pass Marks in the Subject	Credits
7.	Signal and System Lab	1621607	04	15	35	50	20	02
8.	Digital Electronics & M.P. Lab.	1621608	06	15	35	50	20	02
9.	Project Work & Its presentation in Seminar	1621609	-	30	70	100	40	02
	1	Total:	- 10		1	200	1	
Tot	Total Periods per week Each of duration One Hours = 33 Total Marks = 750					24		

MANAGEMENT (COMMON)

	Theory						Credits
Subject Code	No.	of Periods Per V	Veek	Full Marks	:	100	
•	L	T	P/S	ESE	:	70	03
1600601	03	_	_	TA	:	10	03
	_	_	_	CT	:	20	

CONTENTS; THEORY

	Name of the Topics	Hrs/week	Marks
Unit -1	Overview Of Business	02	
	1.1. Types of Business		
	• Service		
	 Manufacturing 		
	• Trade		
	1.2. Industrial sectors Introduction to		
	 Engineering industry 		
	Process industry		
	Textile industry		
	Chemical industry		
	Agro industry		
	1.3 Globalization		
	Introduction		
	Advantages & disadvantages w.r.t. India		
Unit -2	1.4 Intellectual Property Rights (I.P.R.) Management Process		
UIIIL -Z	Management Process		
	2.1 What is Management?		
	• Evolution		
	 Various definitions 		
	Concept of management		
	 Levels of management 		
	 Administration & management 	07	
	 Scientific management by F.W.Taylor 		
	2.2 Principles of Management (14 principles of Henry Fayol)		
	2.3 Functions of Management		
	 Planning 		
	 Organizing 		
	 Directing 		
	 Controlling 		
Unit - 3	Organizational Management		
	3.1 Organization :-		
	 Definition 		
	Steps in organization		
	3.2 Types of organization		
	• Line		
	Line & staff		
	• Functional		
	• Project	07	
	3.3 Departmentatio	07	
	n • Centralized & Decentralized		
	Authority & Responsibility		
	• Span of Control		
	3.4 Forms of ownership		
	• Propriotership		
	 Partnership 		
	 Joint stock 		
	Co-operative Society		
	Govt. Sector		

Unit - 4	Human Resource Management		
	4.1 Personnel Management		
	Introduction		
	Definition		
	• Functions		
	4.2 Staffing		
	Introduction to HR Planning	08	
	Recruitment Procedure		
	4.3 Personnel– Training & Development		
	Types of training Types of training		
	> Induction		
	> Skill Enhancement		
	4.4 Leadership & Motivation		
	Maslow's Theory of Motivation		
	4.5 Safety Management		
	Causes of accident		
	Safety precautions		
	4.6 Introduction to –		
	Factory Act		
	ESI Act		
	Workmen Compensation Act		
	Industrial Dispute Act		
Unit - 5	Financial Management		
	5.1. Financial Management- Objectives & Functions		
	5.2. Capital Generation & Management		
	Types of Capitals		
	Sources of raising Capital		
	5.3. Budgets and accounts		
	Types of Budgets		
	 Production Budget (including Variance Report) 	08	
	> Labour Budget		
	 Introduction to Profit & Loss Account (only concepts); 		
	Balance Sheet		
	5.4 Introduction to –		
	Excise Tax		
	Service Tax		
	Income Tax		
	• VAT		
	Custom Duty		
Unit - 6	Materials Management		
	6.1. Inventory Management (No Numerical)		
	Meaning & Objectives		
	6.2 ABC Analysis		
	6.3 Economic Order Quantity		
		00	
	 Introduction & Graphical Representation 6.4 Purchase Procedure 	08	
	Objects of Purchasing Functions of Purchase Pont		
	Functions of Purchase Dept. Standin Browshading		
	• Steps in Purchasing		
	6.5 Modern Techniques of Material Management		
	 Introductory treatment to JIT / SAP / ERP 		

Unit - 7	Project Management (No Numerical) 7.1 Project Management		08	
		Total	48	

Text/ Reference Books:-					
Titles of the Book	Name of Authors	Name of the Publishe			
Industrial Engg & Management	Dr. O.P. Khanna	Dhanpal Rai & sons New			
Business Administration & Management	Dr. S.C. Saksena	Sahitya Bhavan Agra			
The process of Management	W.H. Newman E.Kirby Warren	Prentice- Hall			
Industrial Management	Rustom S. Davar	Khanna Publication			
Industrial Organisation & Management	Banga & Sharma	Khanna Publication			
Industrial Management	Jhamb & Bokil	Everest Publication , Pune			
Management	Deepak Chandra	Foundation Publishing			

ADVANCE COMMUNICATION SYSTEM

		Theory		No of Period in one session: 60			Credits
Subject Code	No.	of Periods Per V	Veek	Full Marks	:	100	
Subject Code	L	T	P/S	ESE	:	70	2
1621602	04	_	_	TA	:	10	3
				CT	:	20	

Rationale : Objective:

	uve:	Contents (Theory)	Hrs/week	Marks
UNIT-1	Introdu	nction (Review of Communication System):	[12]	
	01.01	Reflection and Refraction of Radio Wave		
	01.02	Ground Wave, Space Wave and Sky Wave		
	01.03	Muf, Skip Distance		
	01.04	Fading and Composition of Ionosphere		
	01.05	Modulation (AM, FM, PM), Expression for ^e AM(t), ^e FM(t), and ^e PM(t)		
	01.06	Simple Problem based on Formulae.		
UNIT-2	Noise		[08]	
	02.01	Types of Noise, External Noise , Thermal Noise, Internal Noise and		
		Short Noise		
	02.02	Noise Figure, Noise Figure Measurement and Noise Temperature		
	02.03	Noise in Communication System		
	02.04	Simple Problem based on Noise Measurement		
UNIT-3	Satellit	e and optical fibre Communication	[10]	
	03.01	Satellite communication System, Satellite Orbits, Geo Stationary Orbit		
	03.02	Basic Components of Satellite Communication System, History of		
		development of satellite Communication in India		
	03.03	Optical Communication, Basic Fibre Optics System, Its Advantages		
	03.04	Optical Fibre Construction, Modes of Propagation		
	03.05	Numerical Aperture, losses in Optical Fibre, Optical Communication		
		System		
UNIT-4	Radar		[08]	
	04.01	Introduction, basic radar system, Determination of Range of Radar.		
	04.02	PPI (Plan Position Indicator)		
	04.03	MTI (Moving target Indicator)		
	04.04	Dopler Effect, MTI principles and Application.		
UNIT-5	Basic I	nformation Theory	[10]	
	05.01	Introduction		
	05.02	Discrete channel, redundancy		
	05.03	Channel Capacity		
	05.04	Hartley-Shannon Law, bandwidth, signal to noise Ratio Simple		
	Numeri	cal Problems		

UNIT-6	Moder	n Communication System.	[12]	
	06.01	Cellular Mobile Communication, Concept of Cells, Basic Cellular mobile radio system		
	06.02	Cell phone, Fascimile (FAX), Important features of Fax machine, Its		
		application		
	06.03	VSAT (very small aperture terminal), Radio Paging System		
		Advantages of Pager		
	06.04	MODEM, VOD(Video On Demand), IPTV (Internet Protocol		
		Television)		
	06.05	Wi-Fi,3G		
	1	Total	[60]	

Sl No.	Title	Author	Publisher
1	Electronics Communication System by Kennedy and Davis.	by Kennedy and Davis.	(TMH)
2	Principles of Communication engineering	by Anokh Singh & A.K Chhabra	(S.CHAND)
3	Wireless & Cellular Communication	by Sanjay Sharma	(KATSO)
4	Advance Communication System	S.N. Purohit	Foundation Publishing

<u>DIGITAL ELECTRONICS – II</u>

	Theory			No of Period in one	Credits			
Subject Code	No.	of Periods Per V	Veek	Full Marks : 100				
Subject Code	L	T	P/S	ESE	:	70	2	
1621603	04	_	_	TA	:	10	3	
				CT	:	20		

Rationale:

Objective:

<u>S.No.</u>	<u>Topics</u>	<u>Periods</u>
01	Multivibrator Circuit.	(08)
02	Linear and Non Linear Wave Shaping Circuits.	(06)
03	Memories.	(12)
04	Input / Output Devices.	(10)
05	A / D and D / A Convertion.	(12)
06	Compact Disks.	(04)
07	Digital Display.	(08)
	Total:	(60)

		Contents (Theory)	Hrs/week	Marks
UNIT-1	MULT	TVIBRATOR CIRCUIT:	[08]	
	01.01	Introduction.		
	01.02	Transistor and Multivibrator circuits.		
	01.03	FET based Multivibrator circuits.		
	01.04	Schmitt Trigger circuit.		
	01.05	555 IC based above circuits.		
	01.06	CMOS based Multivibrator Circuits.		
UNIT-2	LINEAR AND NON LINEAR WAVE SHAPING CIRCUITS:		[06]	
	02.01	Voltage comparater.		
	02.02	Voltage time base generator.		
	02.03	Current time base generator.		
UNIT-3	MEMO	DRIES:	[10]	
	03.01	Classification in different aspects.		
	03.02	Semi conductor dynamic, static memories.		
	03.03	Shift register memory unit.		
	03.04	Magnetic core memories.		
	03.05	Magnetic tape.		
	03.06	Paper tapes.		
	03.07	Read only memories: PROM, EPROM.		
	03.08	EPROM Eraser.		
	03.09	Storage capacity.		

UNIT-4	04.01	Punched Card.	[10]	
	04.02	Paper tape, Magnetic tape, Magnetic drum & recording devices.		
	04.03	Digital recording devices.		
	04.04	CRT Terminals.		
	04.05	Decoder, encoder and Multiplexer.		
	04.06	Serial and Parallel data transfer.		
	04.07	UART.		
	04.08	Bi-directional buffer.		
	04.09	Parity and encoder.		
	04.10	74150, 74156, 74139, 74155, 74151, 74246, ICs.		
UNIT-5	A/DA	AND D / A CONVERTION:	[12]	
	05.01	Introduction.		
	05.02	Sampling theorem.		
	05.03	Weighted register D/A Converter.		
	05.04	R-2R Ladder D/A Converter.		
	05.05	Inverted ladder D/A converter.		
	05.06	A/D converter: parallel comparater, successive approx., counting, Dual		
		slope type.		
	05.07	Sample and hold circuit.		
UNIT-6	COMP	PACT DISKS:	[04]	
	06.01	Hard disk.		
	06.02	CD ROM.		
	06.03	CCD (charged coupled devices).		
	06.04	Storage charge.		
UNIT-7	DIGIT	AL DISPLAY:	[08]	
	07.01	LED, LCD, Light detectors displays.		
	07.02	Magnetic bubble display.		
	07.03	Seven segment display.		
	ı	Total	50	

Sl No.	Title	Author	Publisher
1	Digital Principle and Application.	-	Malvino and Leach.
2	Pulse and Digital Circuit.	-	Milman and Taub.
3	Digital Int. Circuits.	-	Taub and Schilling.
4	Digital Electronics-II	-	Harish Sharma

SIGNAL SYSTEM

		Theory		No of Period in one session: 60			Credits
Subject Code	No. of Periods Per Week			Full Marks	:	100	
Subject Code	L	T	P/S	ESE	:	70	2
1621604	03	_	_	TA	:	10	3
				CT	:	20	

Rationale : Objective:

O1.01 Basic Continuous time Signals. O1.02 Basic discrete time Signals. O1.03 Linear time invariant Signals. O1.04 Random Signals. O1.04 Random Signals. O1.07 O1.04 Random Signals. O1.07 O1.04 Random Signals. O1.07 O1.		Contents (Theory)	Hrs/week	Marks
01.02 Basic discrete time Signals. 01.03 Linear time invariant Signals. 01.04 Random Signals. 01.04 Random Signals. 02.01 Introduction. 02.02 Linear System from a physical point of view 02.03 Linear System from a Mathematical point of view 02.03 Linear System from a Mathematical point of view 02.03 Linear System from a Mathematical point of view 03.01 Fourier series expansion. 03.02 Symmetry expansion. 03.03 Exponential form of Fourier series. 03.04 Fourier Integral & Fourier Transform. 03.05 Analysis by Fourier Methods. 04.01 Introduction, Definition of Laplace transform of a function, Inverse Laplace transform Basic properties of Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations of some important functions. 06.03 The initial & final value Theorem. 06.05 The initial & final value Theorem. 06.06 The shifting Theorem. 06.07 Solution of difference equations. 06.07 Solution of difference equations. 06.07 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.	UNIT-1	SIGNALS & THEIR REPRESENTATION:	[07]	
01.02 Basic discrete time Signals. 01.03 Linear time invariant Signals. 01.04 Random Signals. 01.04 Random Signals. 02.01 Introduction. 02.02 Linear System from a physical point of view 02.03 Linear System from a Mathematical point of view 02.03 Linear System from a Mathematical point of view 02.03 Linear System from a Mathematical point of view 03.01 Fourier series expansion. 03.02 Symmetry expansion. 03.03 Exponential form of Fourier series. 03.04 Fourier Integral & Fourier Transform. 03.05 Analysis by Fourier Methods. 04.01 Introduction, Definition of Laplace transform of a function, Inverse Laplace transform Basic properties of Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations of some important functions. 06.03 The initial & final value Theorem. 06.05 The initial & final value Theorem. 06.06 The shifting Theorem. 06.07 Solution of difference equations. 06.07 Solution of difference equations. 06.07 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.		01.01 Basic Continuous time Signals.		
O1.03 Linear time invariant Signals. O1.04 Random Signals. O1.05 O1.06 O1.07 O		E C		
UNIT-2 NTRODUCTION TO LINEAR SYSTEM: (05]				
UNIT-2 Introduction. 02.01 Introduction. 02.02 Linear System from a physical point of view 02.03 Linear System from a Mathematical point of view 02.03 Linear System from a Mathematical point of view 02.03 Linear System from a Mathematical point of view 03.01 Fourier series expansion. 03.02 Symmetry expansion. 03.03 Exponential form of Fourier series. 03.04 Fourier Integral & Fourier Transform. 03.05 Analysis by Fourier Methods. UNIT-4 LAPLACE TRANSFORMS: UNIT-5 LAPLACE TRANSFORMS: UNIT-5 Inverse Laplace transform Basic properties of Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 06.08 Introductions to difference equations. 06.09 Solution of difference equations. 06.01 System response & transfer function. 07.02 Block diagram transformations Signal flow graph. 07.03 Rule for block diagram transformations. Signal flow graph. 07.04 Mason's gain formula & its applications.				
UNIT-3 Consider the composition of the compositi	UNIT-2		[05]	
UNIT-3 Comparison		02.01 Introduction.		
UNIT-3 FOURIER SERIES & TRANSFORMS: [08]				
UNIT-3 FOURIER SERIES & TRANSFORMS: 03.01 Fourier series expansion. 03.02 Symmetry expansion. 03.03 Exponential form of Fourier series. 03.04 Fourier Integral & Fourier Transform. 03.05 Analysis by Fourier Methods. UNIT-4 LAPLACE TRANSFORMS: 04.01 Introduction, Definition of Laplace transform of a function, Inverse Laplace transform Basic properties of Laplace transform, Laplace transform algebraic and trigonometric functions, Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 06.08 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfor function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
03.02 Symmetry expansion. 03.03 Exponential form of Fourier series. 03.04 Fourier Integral & Fourier Transform. 03.05 Analysis by Fourier Methods. UNIT-4 LAPLACE TRANSFORMS: 04.01 Introduction, Definition of Laplace transform of a function, Inverse Laplace transform Basic properties of Laplace transform, Laplace transform algebraic and trigonometric functions, Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.	UNIT-3	1	[08]	
03.02 Symmetry expansion. 03.03 Exponential form of Fourier series. 03.04 Fourier Integral & Fourier Transform. 03.05 Analysis by Fourier Methods. UNIT-4 LAPLACE TRANSFORMS: 04.01 Introduction, Definition of Laplace transform of a function, Inverse Laplace transform Basic properties of Laplace transform, Laplace transform algebraic and trigonometric functions, Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
03.03 Exponential form of Fourier series. 03.04 Fourier Integral & Fourier Transform. 03.05 Analysis by Fourier Methods. UNIT-4 LAPLACE TRANSFORMS: 04.01 Introduction, Definition of Laplace transform of a function, Inverse Laplace transform algebraic and trigonometric functions, Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform for some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.		*		
UNIT-4 UNIT-4 LAPLACE TRANSFORMS: 04.01 Introduction, Definition of Laplace transform of a function, Inverse Laplace transform algebraic and trigonometric functions, Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 06.08 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
UNIT-4 LAPLACE TRANSFORMS: 04.01 Introduction, Definition of Laplace transform of a function, Inverse Laplace transform Basic properties of Laplace transform, Laplace transform algebraic and trigonometric functions, Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
UNIT-4 LAPLACE TRANSFORMS: 04.01 Introduction, Definition of Laplace transform of a function, Inverse Laplace transform Basic properties of Laplace transform, Laplace transform algebraic and trigonometric functions, Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
04.01 Introduction, Definition of Laplace transform of a function, Inverse Laplace transform Basic properties of Laplace transform, Laplace transform algebraic and trigonometric functions, Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: [12] 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.	IINIT-4		[10]	
Laplace transform Basic properties of Laplace transform, Laplace transform algebraic and trigonometric functions, Laplace transform of derivatives and integrals. L-transform of periodic function. INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.	OTTI 4	04.01 Introduction, Definition of Laplace transform of a function, Inverse	[10]	
transform algebraic and trigonometric functions, Laplace transform of derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: (12) 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
derivatives and integrals. L-transform of periodic function. UNIT-5 INVERSE LAPLACE TRANSFORMATIONS: Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: [12] 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: [12] 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
Inverse Laplace transform Heaviside expansion theorem, initial and final value theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: [12] 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.	IINIT-5	INVERSE LAPI ACE TRANSFORMATIONS:	[00]	
theorem, convolution integral, inverse Laplace transform of some irrational function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.	OTHE 5		[02]	
function, Application of Laplace transform and Inverse Laplace transform for the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
the solution of differential equations. UNIT-6 SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS: [12] 06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
06.01 Introduction. 06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.	UNIT-6	SAMPLED-DATA SYSTEM & THE Z-TRANSFORMATIONS:	[12]	
06.02 The Z-transformations. 06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
06.03 Z-transformations of some important functions. 06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
06.04 The shifting Theorem. 06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
06.05 The initial & final value Theorem. 06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
06.06 Introductions to difference equations. 06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
06.07 Solution of difference equations. UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
UNIT-7 MATHEMATICAL MODELLING OF PHYSICAL SYSTEMS: 07.01 System response & transfer function. 07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.	UNIT-7		[09]	
07.02 Block diagram representations. 07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.		07.01 System response & transfer function.		
07.03 Rule for block diagram transformations Signal flow graph. 07.04 Mason's gain formula & its applications.				
07.04 Mason's gain formula & its applications.				
			60	

DUUI	As Recommended.		
1.	Analysis of linear systems.	ı	D. K. Cheng.
2.	Circuit & System Analysis.	-	A. Paspoulis.
3.	Signal & linear system.	1	Gabel & Roberts.
4.	Communication System.	1	Haykins.
5.	Signals and Systems, PHI.	1	A. Oppenheirn and A. Willsky.
6.	Control System Engineering.	-	Nagrath & Gopal.
7.	Signal System	-	P.K. Nair

ADVANCED MICROPROCESSOR

	Theory			No of Period in or	Credits		
Subject Code	No.	of Periods Per V	Veek	Full Marks	:	100	
Subject Code	L	T	P/S	ESE	: 70	2	
1621605A	03	_	_	TA	:	10	3
				CT	:	20	

Rationale : Objective:

S.No.	<u>Topics</u>	Periods
01	Introduction to 16 BIT Microprocessor.	
02	Data and Address-BUS Configuration.	
03	Addressing Modes.	
04	Interrupt Processing.	
05	Peripheral Interfacing Chips.	
06	Architecture of 68000 Motorola processor in detail.	
07	Organisation of Instruction Sets.	
08	Architecture for standard peripheral devices.	
09	I/O Control.	
10	System Design with few industrial examples using 8086 and 68000 processors.	

		CONTENTS (Theory)	Hrs/week	Marks
Unit-1	INTROI	DUCTION TO 16 BIT MICROPROCESSOR:	[]	
	01.01	Intel 8086 Architecture.		
	01.02	Intel 8088 Architecture.		
	01.03	Pipeline Architecture.		
	01.04	Bus interface unit and execution unit.		
Unit-2	DATA A	AND ADDRESS-BUS CONFIGURATION:	[]	
	02.01	Memory segmentation.		
	02.02	Memory address generation details.		
	02.03	Logical and Physical address generation.		
	02.04	I/O Port addresses.		
	02.05	Memory mapping.		
	02.06	Data, Code and Stack segmentation.		
Unit-3		ESSING MODES:	[]	
	03.01	Instruction set in detail and Addressing Modes.		
	03.02	Assembler directives.		
	03.03	Programming examples.		
Unit-4		RUPT PROCESSING:	[]	
	04.01	Hardware Interrupt.		
	04.02	Software Interrupt.		
	04.03	Internal Interrupt.		
	04.04	Types of Interrupt.		
	04.05	Interrupt enabling and disabling.		
Unit-5		IERAL INTERFACING CHIPS:	[]	
	05.01	Intel 8255.		
	05.02	Intel 8253.		
	05.03	Intel 8259.		
	05.04	Intel 8251.		
	05.05	Interfacing of these chips with processor.		
	05.06	Digital interfacing.		
	05.07	Analog interfacing.		
	05.08	Industrial control applications.		

Unit-6	ARCHIT	TECTURE OF 68000 MOTOROLA PROCESSOR IN DETAIL.	[]	
	06.01	Introduction.		
	06.02	Reference in 68000.		
	06.03	Memory Address.		
	06.04	Instruction formats.		
	06.05	Addressing Modes.		
	06.06	Instruction Sets.		
	06.07	STACK, Read and Write Cycle Timing.		
Unit-7	ORGANI	ORGANISATION OF INSTRUCTION SETS:		
	07.01	Addressing modes.		
	07.02			
	07.03	Examples for sorting logical operations.		
	07.04	Control loops.		
	07.05	Interrupt and exception programming.		
Unit-8	I/O CON	<u>I/O CONTROL</u> :		
	08.01	I/O control using parallel interface.		
	08.02	I/O control using memory mapped I/O control for data acquisition.		
	08.03	Data output through binary I/O lines.		

1. Intel Manual of 8086

2. Microprocessing and Interfacing. - Hall

3. 6800 Assembly Lan. Programming. - Leventhal

4. Microprocessor - Lui & Gibson

5. Motorola Manufacturing Data Sheets.

6. Advanced Microprocessor - V.K. Tiwari

ADVANCED INSTRUMENTATION & MEASUREMENT

	Theory			No of Period in one session :			Credits
Subject Code 1621605B	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	,
	03	_	_	TA	:	10	3
				CT	:	20	

Rationale : Objective:

S.No. Topics Periods

01 Sensors.

02 Microprocessor based data acquisition.

03 Process Control.

04 Electronic Graphic Recording Systems.

	CONTENTS (Theory)					
Units-1	SENSO	ORS:				
	01.01	Electrical sensors for: (a) Mechanical acquisition, (b) Hydraulic acquisition, (c) Pneumatic acquisition.				
	01.02	Analog sensors.				
	01.03	Digital sensors.				
Units-2	MICRO	OPROCESSOR BASED DATA ACQUISITION:				
	02.01	Instrumentation amplifier.				
	02.02	Multiplexers.				
	02.03	Sample and hold circuit.				
	02.04	D/A Converter.				
	02.05	A/D Converter.				
	02.06	Data acquisition system.				
Units-3		ESS CONTROL:				
	03.01	Process controller.				
	03.02	Hardware data logging.				
	03.03	Microcomputer as process controller.				
	03.04	Supervisory control.				
	03.05	Direct digital control.				
Units-4	ELECT	TRONIC GRAPHIC RECORDING SYSTEMS:				
	04.01	Introduction.				
	04.02	Balancing arrangement.				
	04.03	XY Recorder.				
	04.04	Types and briefs of permanent recording systems.				
		Total				

Books Recommended:

1. Microprocessor with Application in Control. - Ahson.

2. Microprocessor in Instruments & Control. - Bibbero

3. Modern Instrumentation System. - Mani & Others.

4. Advanced Instrumentation & Measurment

MINING ELECTRONICS

Subject Code 1621605C	Theory			No of Period in one session :			Credits
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	,
	03	_	_	TA	:	10	3
				CT	:	20	

Rationale :

Objective:		
S.No.	<u>Topics</u>	Periods
01	Basic Quantity Measurement.	
02	Environmental Measurement.	
03	Sensors.	
04	Detectors.	
05	Transport System Monitoring.	
06	Surveillance of Electrical System.	
07	MIS Systems.	

		CONTENTS (Theory)	Hrs/week	Marks
Unit-1	BASIC	QUANTITY MEASUREMENT:		
	01.01	Measurement of temperature.		
	01.02	Measurement of pressure.		
	01.03	Measurement of humidity.		
	01.04	Measurement of Air Velocity.		
Unit-2	ENVIRO	ONMENTAL MEASUREMENT:		
	02.01	Introduction.		
	02.02	Monitoring and recording of methane.		
	02.03	Monitoring and recording of carbon mono-oxide.		
	02.04	Measuring of Oxygen and other gas quantities.		
Unit-3	SENSOI	RS:		
	03.01	Classification of gas sensors.		
	03.02	Solid state sensors.		
	03.03	Gas analysis.		
	03.04	Ionisation chamber.		
Unit-4	DETEC	TORS:		
	04.01	Introduction & Classification.		
	04.02	Early detectors of ground fires.		
	04.03	Smoke/fire detectors.		
	04.04	Detection of rock movements.		
	04.05	Detection of change in pressure.		
Unit-5	TRANS	PORT SYSTEM MONITORING:		
	05.01	Introduction & Classification.		
	05.02	Tub transport system.		

	05.03	Conveyer belt transport system.	
	05.04	NDT for wire ropes.	
Unit-6	SURVE	ILLANCE OF ELECTRICAL SYSTEM:	
	06.01	Introduction.	
	06.02	Surveillance of underground electrical systems.	
	06.03	Surveillance of ground electrical system.	
	06.04	Surveillance of communication system.	
	06.05	Insulation monitoring.	
	06.06	Fault detection in different section.	
Unit-7	MIS SY	STEMS:	
	07.01	Introduction to control dispatch system.	
	07.02	Signaling in mines.	
	07.03	Different types of transmitters used in mines.	
	07.04	Different types of receiver used in mines.	
	07.05	Important safely signals used in mines.	
		Total	

1 Mining Electronics

MEDICAL ELECTRONICS

Subject Code 1621605D	Theory			No of Period in one session :			Credits
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	2
	03	_	_	TA	:	10	3
				CT	:	20	

Rationale : Objective:

Topics Periods S.No. 01 Body Skeleton. 02 Muscle Physiology. 03 Heart Physiology. 04 Respiration. 05 Neuro Physiology. 06 Recording Techniques. 07 Measurement & Recording of Non-Electrical Systems.

08 Electronic Instruments affecting Human Body.

		CONTENTS (Theory)	Hrs/week	Marks
Unit-1	BODY	SKELETON:		
	01.01	Nerve Physiology.		
	01.02	Membrane Potential.		
	01.03	Action Potential.		
	01.04	Function of Nerve Junctions.		
	01.05	Functions of Neo-Neural Junctions.		
Unit-2	MUSCI	LE PHYSIOLOGY:		
	02.01	Function of Skeleton & Smooth Muscle.		
	02.02	Function of Cardiac Muscle.		
	02.03	Cardiac Rhythmic Contraction.		
Unit-3	HEART	TPHYSIOLOGY:		
	03.01	Introduction to Heart function.		
	03.02	Blood flow.		
	03.03	Arterial Pressure.		
	03.04	ECG.		
Unit-4	RESPI	<u>RATION</u> .		
Unit-5	NEURO	PHYSIOLOGY:		
	05.01	Introduction.		
	05.02	Function of Spinal Cord.		
	05.03	Cord Reflexes.		
Unit-6	RECOI	RDING TECHNIQUES:		
	06.01	Introduction.]	
	06.02	Electro-Cardiac Graph.]	
	06.03	Electro Mypho Graph.]	
	06.04	Electro Encyclo Graph.		
		Total		

Books Recommended:

1. Bio Medical Electronics - Cromwell & others.

2. Bio Electronic Instrument & Measurement - Khandpur.

3. Bio Medical Instrument & Measurement - Cromwell & others.

4. Medical Electronics -

MICTROWAVE ENGINEERING

Subject Code 1621605E	Theory			No of Period in one session :			Credits
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	,
	03	_	_	TA	:	10	3
				CT	:	20	

Rationale:

Objective:

S.No.	Topics
01	Microwave Tubes.
02	Microwave Semi Conductor Devices.
03	Microwave Components and Antennas.

Microwave Transmission.Microwave Measurements.

		CONTENTS	Hrs/week	Marks
Unit-1	MICROW	AVE TUBES:		
	01.01	Introduction.		
	01.02	Microwave frequency band spectrum.	_	
	01.03	Klystron.		
	01.04	Reflex Klystron.		
	01.05	Travelling Wave tubes.		
	01.06	Magnetron.		
Unit-2	MICROW	AVE SEMI CONDUCTOR DEVICES:		
	02.01	Microwave Diodes.		
	02.01.01	Varactor Diodes.		
	02.01.02	Tunnel Diodes.		
	02.01.03	Gunn Diodes.		
	02.01.04	Avalanche effect diodes.		
	02.02	MASER.		
Unit-3	MICROW	AVE COMPONENTS AND ANTENNAS:		
	03.01	Coaxial Lines.	_	
	03.02	Wave guides.		
	03.02.01	Rectangular.		
	03.02.02	Circular.		
	03.03	Wave guide corners and Tees.		
	03.04	Directional couplers.		
	03.05	Attenualtors.		
	03.06	Antennas.		
	03.07.01	Parabolic.		
	03.08.02	Horn.		
	03.09.03	Slot.		

Unit-4	MICRO	WAVE TRANSMISSION:		
	04.01	Maxwells equations.]	
	04.02	Modes of propagation in rectangular and circular wave guides.	1	
	04.03	Transmission through rectangular wave guide.		
	04.04	Cut off and guide wavelength.		
	04.05	Phase and group velocity.		
Unit-5	DETEC'	TORS:		
	05.01	Measurement of impedance.		
	05.02	Measurement of frequency.		
	05.03	Voltage standing wave ratio.		

- 1. Microwave Communication.
- 2. Foundation of Microwave Communication.
- 3. Microwaves.
- 4. Electromagnetic Waves & Radiating Systems
- 5. Microwave Theory & Measurement
- 6. Microwave Engineering

- Angelkos & Everhar.
- Collins.
- Sanjeev Gupta & others.
- Jordan.
- Heylward Packard.
- Anand Pal

ADVANCE COMMUNICATION SYSTEM LAB.

	Practical		No of Period in one session :			Credits	
Subject Code	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	ESE	:	50	,
1621606	_	_	06	Internal	:	15	3
				External	:	35	

	Contents (Practical)	Hrs/week	Marks
Unit-1	To observe an AM wave on CRO produced by standard signal		
	generator using internal and external modulation. The depth of		
	modulation is to be measured with the above experiment.		
Unit-2	To generate an amplitude modulated Signal using a square-law		
	modulator and study the spectra of AM wave.		
Unit-3	To generate and study double side band suppressed carrier (DSB-SC)		
	modulated Signal.		
Unit-4	To Study the frequency characteristics of pre-emphasis and de-		
	emphasis.		
Unit-5	To Study time-division multiplexing and demultiplexing technique		
	and observe cross-talk.		
Unit-6	To generate and Study wide band and narrow band noise.		
Unit-7	Observation of dependence of intersymbol Interference (ISI) on band-		
	width of the channel and the eye pattern due to noise in the channel.		
Unit-8	To Set-up circuits for pulse code modulation and demodulation and to		
	study the modulator and demodulator with the study of quantization		
	noise.		
Unit-9	To verify the sampling theorem and to observe aliasing effect.		
Unit-10	To Study phase locked characteristics and its application as FM		
	demodulator.		
Unit-11	To generator frequency modulated signal using VCO (Voltage		
	controlled oscillator)		
Unit-12	To study the troubleshooting of monochrome TV receiver with		
	expected faults with their remedy.		
Unit-13	To study the trouble shooting of colour TV receiver with normal		
	defects with their remedy.		
Unit-14	Study of CRO, and its application for measurement of phase,		
	frequency, and amplitude such that it can be used for the		
	communication System.		

SIGNAL AND SYSTEM LAB.

		Term Work		No of Period in or	ne sess	ion :	Credits
Subject Code	No. of Periods Per Week			Full Marks	:	50	
1621607	L	T	P/S	Internal Examiner	:	15	02
102100.		_	04	External Examiner	:	35	

Rationale : Objective:

	Contents (Term Work)	Hrs/week	Marks
UNIT-1	Write a program to generate the discrete sequences (i) unit step (ii) unit impulse		
	(iii) ramp (iv) periodic sinusoidal sequences. Plot all the sequences.		
UNIT-2	Find the Fourier transform of a square pulse. Plot its amplitude and phase		
	spectrum.		
UNIT-3	Write a program to convolve two discrete time sequences. Plot all the sequences.		
	Verify the result by analytical calculation.		
UNIT-4	Write a program to find the trigonometric Fourier series coefficients of a		
	rectangular periodic signal. Reconstruct the signal by combining the Fourier		
	series coefficients with appropriate weightings.		
UNIT-5	Write a program to find the trigonometric and exponential Fourier series		
	coefficients of a periodic rectangular signal. Plot the discrete spectrum of the		
	signal.		
UNIT-6	Generate a discrete time sequence by sampling a continuous time signal. Show		
	that with sampling rates less than Nyquist rate, aliasing occurs while		
	reconstructing the signal.		
UNIT-7	The signal x)t) is defined as below. The signal is sampled at a sampling rate of		
	1000 samples per second. Find the power content and power spectral density for		
	this signal.		
	$X(t) = \int \cos(2\pi \times 47t) + \cos(2\pi \times 219t), \leq t \leq 10$		
	0, otherwise		
UNIT-8	Write a program to find the magnitude and phase response of first order low pass		
	and high pass filter. Plot the responses in logarithmic scale.		
UNIT-9	Write a program to find the response of a low pass filter and high pass filter, when		
	a speech signal is passed through these filters.		
UNIT-10	Write a program to find the autocorrelation and cross correlation of sequences.		
UNIT-11	Generate a uniformly distributed length 1000 random sequence in the range (l0,1).		
	Plot the histogram and the probability function for the sequence. Compute the		
	mean and variance of the random signal.		
UNIT-12	Generate a Gaussian distributed length 1000 random sequence. Compute the		
	mean and variance of the random signal by a suitable method.		
UNIT-13	Write a program to generate a random sinusoidal signal and plot four possible		
	realizations of the random signal.		
UNIT-14	Generate a discrete time sequence of N=1000 i.i.d uniformly distributed random		
	numbers in the interval (-05, -05) and compute the autocorrelation of the		
	sequence.		
UNIT-15	Obtain and plot the power spectrum of the output process when a white random		
	process is passed through a filter with specific impulse response.		
	Total		

DIGITAL ELECTRONICS & MICROPROCESSOR LAB

		Term Work	Vork No of Period in one sess		ion :	Credits	
Subject Code	No. of Periods Per Week		Full Marks	:	50		
1621608	L	T	P/S	Internal	:	15	2
	_	_	06	External	:	35	

	Contents (Term Work)	Hrs/week	Marks
Unit-1	Operation of Mono stable multivibrator circuit.		
Unit-2	Operation of Bi stable multivibrator circuit.		
Unit-3	Operation of Astable multivibrator circuit.		
Unit-4	Operation of Schmitt trigger circuit.		
Unit-5	Operation of Comparator circuit.		
Unit-6	Operation of Integrator circuit.		
Unit-7	Operation of Blocking Oscillator circuit.		
Unit-8	Operation of Shift registers and counter.		
Unit-9	Operation of EPROM eraser.		
Unit-10	Operation of Multiplexers ICs.		
Unit-11	Operation of D/A converter.		
Unit-12	Operation of A/D converter.		
Unit-13	Operation of R-2R ladder network.		
Unit-14	Operation of Sample and Hold circuit.		
Unit-15	Operations of seven segments display circuit.		
	Total		

PROJECT WORK AND ITS PRESENTATION IN SEMINAR

	Term Work			No of Period in one session :			Credits
Subject Code 1621609	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S		:		2
	_	_	_	Internal Examiner	:	30	2
				External Examiner	:	70	

Rationale:

The Project work and its presentation in seminar is an important subject for a Diploma holder technician. The course is designed to help a students develop confidence, skill in report writing, skill to analyse, design, estimating and costing, deciding a process etc, the course will also help in developing communication skill, skill of quality documentation.

Objective:

A student will be able to:

- Identify a Problem
- Analyse the Problem
- Develop logical approach to solution of a Problem.
- Design of a product
- Make estimate of materials and processes and calculate the cost of production and decide the price of the product.
- Manufacture / assemble /fabricate the product in the workshop.
- Test the product for its quality.
- Prepare a project report (Computer printed / typed)
- Present in the form of seminar.

<u>S.No.</u>	<u>Topics</u>
01	To make a bridge rectifier.
02	To make/assemble a voltage stabilizer.
03	To make/assemble stabilizer for refrigerator.
04	To make a timer circuit IC 555.
05	Electronic Regulator for Ceiling Fan.
06	To fabricate a circuit for characteristics for NPN/PNP transistors.
07	Bi-stable Multivibrator
08	Half & Full adder, substractor & Comparator.
09	8:1 Multiplexer.
10	Realising Railway Signaling System.

REPORT WRITING:

A report must include

	Contents (Term Work)	Hrs/week	Marks
Unit-1	Introduction.		
Unit-2	Design.		
Unit-3	Estimating of materials.		
Unit-4	Calculation of cost of the materials.		
Unit-5	Operation time estimation.		
Unit-6	Cost of Operation.		
Unit-7	Process of Manufacture / Assembly / fabrication.		
Unit-8	List of tools/equipments used with specification.		
	Total		

A project on live industrial problems that may be—

- Technical
- Human Relation
- Welfare
- Safety
- Any other

The Project Report should consist of:-

Unit-1	Introduction.	Hrs/week	Marks
Unit-2	Problem statement.		
Unit-3	Background of Industry.		
Unit-4	Organisational set –up.		
Unit-5	Plant Lay –out.		
Unit-6	Reason for selecting a problem.		
Unit-7	Analysis of Problem.		
Unit-8	Probable solution.		
Unit-9	Best solution possible.		
Unit-10	Any other.		

Project work/ project report should be presented in the from of a seminar for developing confidence and communication skill among the students.

NOTE:-

Project work will be allotted to the students just in the beginning of the session. Each student will be give a separate work under the supervision of a teacher. Total number of students may be divided among the number of teachers available. The teacher concerned will select separate problem for each student under him and allot it to him at the beginning of the session. The work allotted should be completed with in scheduled time. i e. by the end of the session. Problems selected should preferably conform to the syllabus. If it is outside of the syllabus then it must be within the field of electronics engineering.